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1. Introduction
On the March 11, 2020, the World Health Organization (WHO) officially announced the

outbreak of the new coronavirus COVID-19 a pandemic, after spreading to more than a

100 countries and leading to several thousands of cases in its first few months, with WHO

declaring a pandemic over a coronavirus for first time [1]. COVID-19, which is a highly

infectious disease, is caused by the SARS-CoV-2 virus [2]. Relatively young subjects that

have been affected by COVID-19 usually are asymptomatic or present mild symptoms

like cough, headache, fatigue, and fever, which for the general population and especially

elders and patients with chronic conditions may progress to more serious symptoms like

diarrhea, dyspnea, pneumonia, and death [3]. Young and middle-aged subjects being

diagnosed with COVID-19 are having significantly lower mortality rates comparing to

elder subjects with COVID-19 which have higher risk to progress to severe condition

[4,5]. With a 3.4% mortality rate estimated by the WHO on March 3, 2020 [6] and as

COVID-19 is highly infectious it can easily be spread from asymptomatic to vulnerable

population. To tackle spreading of COVID-19 and thus protect vulnerable people several

governments around the world have applied isolation measures like social distancing

and lockdown, while in parallel they perform large scale or targeted to suspicious cases

diagnostic tests.

The diagnosis of COVID-19 is performed by the reverse-transcription polymerase

chain reaction (RT-PCR) test after collection of proper respiratory tract specimen, which is

a laboratory-based test for detection and quantification of a targeted DNA molecule [7].

The RT-PCR test can be done only by laboratories having the necessary infrastructure
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to carry it out and subject to case test may need be repeated after one or two days while

the cost of the equipment and the required PCR reagents is not low, thus making this

diagnostic test expensive and sometimes time consuming without counting the need for

specialized microbiologists to do the tests analyses and the laboratory protocols that need

to be taken to keep staff safe [7]. Because of these difficulties in many countries, the

number of diagnostic tests for the new coronavirus is performed to only suspicious and/or

critical cases and governments have taken isolation measures, which are causing socio-

economical problems (e.g., increasing number of domestic abuse cases [8], reduction

of economic growth [9], global trade [10]). Based on the above-mentioned facts, the

development of alternative, complementary, and low-cost tools for detection of COVID-19

and for decision-making support is essential.

The development of powerful machine learning tools over the last decade and the

existence of deep learning models for classification of images, trained from big data

collections could offer support in the global effort against the COVID-19. In this paper,

we investigate the use of existing convolutional neural network (CNN) models pretrained

with large volumes of image databases on the detection of the new coronavirus using

transfer learning. In detail, a number of well-known deep CNN models were retrained

using two databases of chest X-ray images including COVID-19 examples. The remainder

of this chapter is organized as follows: literature review is provided in Subsection 1.1;

description of the methodology followed, datasets used, and pretrained deep CNN

models evaluated is given in Section 2; evaluation results are provided in Section 3 and

conclusions in Section 4.

1.1 Literature review

An automated classification method for X-ray COVID-19 lung images was reported by

Mahdy et al. [11]. The proposed technique takes a subject’s X-ray lung image and in-

creases its contrast by applying a median filter on it. The resulting image then undergoes

a threshold based multilevel image segmentation using the Otsu objective function. The

support vector machine (SVM) algorithm is then used to classify the COVID-19 positive

images from the other images. The proposed algorithm was trained and tested using 40

contrast-enhanced lungs X-ray images of size 512 � 512 in-plane resolution. This dataset

includes 15 normal lung images and 25 infected lungs with COVID-19 images from the

Montgomery County X-ray Set and covid-chest X-ray-dataset-master, respectively. They

reported an average sensitivity, accuracy, and specificity of 95.76%, 97.48%, and 99.7%

for their system, respectively.

Abbas et al. proposed a decompose, transfer, and compose (DeTraC) CNNs-based

algorithm for classification of COVID-19 chest X-ray images in Ref. [12]. The proposed

method first trains the backbone pretrained CNN model of the DeTraC to select deep

local features of each input image and simplifies the distribution of the local build of the

data using the class-decomposition layer of DeTraC. It then uses a sophisticated gradient

descent optimization algorithm to complete the network’s training. The proposed

256 Data Science for COVID-19



method finally uses the class-structure layer of DeTraC to polish the classification of the

images. The authors used a combination of 80 samples of normal Chest X-ray images

from Japanese Society of Radiological Technology (JSRT), 105 sample of COVID-19, and

11 SARS infected images from Cohen JP. COVID-19 image dataset [13]. They applied

various data augmentation techniques like flipping, rotation, and translation to augment

the amount of samples. They reported a performance accuracy of 95.12% with a sensi-

tivity of 97.91%, a precision of 93.36%, and a specificity of 91.87%.

The application of the pretrained CNNs along with SVM classifier to detect the

COVID-19 from chest X-ray images was reported in Ref. [14]. The proposed technique

employs a pretrained CNN to extract deep features from the input chest X-ray image.

The SVM classifier is then trained and used to recognize the COVID-19 cases. The

performance of the presented approach was assessed using datasets online available in

GitHub, Kaggle, and Open-i, which contain validated X-ray images. The proposed ar-

chitecture, i.e., resnet50 plus SVM, attained COVID-19 detection accuracy, in terms of F1

score, False Positive Rate, MCC (Matthews Correlation Coefficient), and Kappa of

95.38%, 91.41%, 95.52%, and 90.76%, respectively (disregarding MERS, SARS, and ARDS).

Wang and Wong proposed a deep CNN architecture for recognition of subjects

positive to COVID-19 from chest X-ray images, named COVID-Net in Ref. [15]. The

authors used a human-machine cooperative strategy to design the COVID-Net. The

proposed network is able to classify chest X-ray images into three groups: (a) normal

(no infection), (b) non-COVID-19 contamination (e.g., bacterial, viral, etc.), and (c)

COVID-19 viral contamination. This technique employed residual architecture design

principles, introduced in Ref. [16] to enable reliable neural network architecture to be

trained to its high performance. Moreover, they generated a chest X-ray image dataset to

train the proposed COVID-Net, called: COVIDx. COVIDx dataset contains 13,800 Chest

X-ray images from 13,725 patients, constructed as a mixture and alteration of three open

access data repositories’ images (i.e. [17,18], and [13]). The proposed technique achieved

92.6% accuracy with 87.1% sensitivity and 96.4% Positive Predictive Value for detecting

COVID-19 cases.

Li et al. introduced a three-dimensional (3D) deep learning framework to distinguish

COVID-19 cases from chest X-ray images called: COVNet in Ref. [19]. The proposed

method first extracts the lung region with the image as the region of interest (ROI) by a

U-net [20]ebased segmentation algorithm. The resulting ROI part of the image was then

fed to the COVNet for classification. The COVNet employs a ResNet-50, presented in

Ref. [16] to extract features for the corresponding ROI. The proposed technique then

performs a max-pooling operation to combine the features, generating a feature map. An

entirely connected layer and softmax activation function are then used to determine the

detection score for COVID-19, nonpneumonia and CAP case from the resulting feature

map. The authors reported a performance of 90% and 96% in terms of sensitivity and

specificity for the proposed framework on detecting COVID-19 cases from an inde-

pendent testing dataset.
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In Ref. [21], an artificial intelligenceebased automatic computed tomography (CT)

image examination tools for recognition, quantification, and tracking of COVID-19 cases

from others were presented. The proposed method consists of two subsystems and

analyses the CT case at two separate levels. For subsystem A, the authors used a salable

off-the-shelf software to detect small opacities and nodules within a 3D lung volume

(RADLogics Inc., Boston [22]). This software generates quantitative measurements

including axial measurements (RECIST), volumetric measurements, The Hounsfield

Unit values, texture description, and calcification recognition for solid versus subsolid

versus GG from the input image. They assumed that this software can detect Ground-

Glass Opacities, which current studies showed is one of the important features for

detecting COVID-19, within the input image. In subsystem B, the lung ROI is first

extracted by a U-net architecture for image segmentation, presented in Refs. [20,23]. It

then uses a pretrained ResNet-50d2D deep CNN architecture, introduced in Ref. [16],

which has 50 layers and can categorize the image into 1000 types. The authors fine-tuned

the network parameters by further training to solve the problem of having suspicious

COVID-19 cases from different Chinese hospitals. The authors assessed the performance

of the proposed system using CT images of 56 COVID-19 positive chines patients and for

51 chines non-Coronavirus patients from multiple institutions in China. The authors

assessed the performance of the proposed system using CT images of 56 subjects with

positive COVID-19 diagnosis and for 51 chines non-Coronavirus patients from multiple

institutions in China. They reported an area under curve (AUC) of 0.996 (95%CI:

0.989e1.00), assuming the positive ratio as a decision feature.

Chowdhury et al. used a deep CNN-based transfer learning approach for automatic

detection of COVID-19 pneumonia in Ref. [24]. The authors trained and tested four

different popular CNN-based deep learning algorithms, called AlexNet [25], ResNet-18

[26], DenseNet-201 [26], and SqueezeNet [27], to classify normal and pneumonia pa-

tients using chest X-ray images. They considered two classification schemes: (a) COVID-

19 pneumonia and normal and (b) COVID-19 pneumonia, viral, and normal. To generate

experimental results, the author generated a public database that comprises a combi-

nation of 190 COVID-19, 1341 normal and 1345 viral pneumonia, chest X-ray images and

conducted two experiments on two classification schemes: (i) two- and three-class

classification using models trained without augmentation and (ii) two- and three-class

classification using models trained with image augmentation. They used accuracy,

sensitivity or recall, specificity, precision (PPV), AUC, F1 score measures to assess the

performance of different networks. Their experimental results show that SqueezeNet

outperforms other three different deep CNN networks for classifying images from

normal and COVID-19 group and in normal, viral pneumonia and COVID-19 group,

where its classification accuracy, sensitivity, specificity, and precision of normal and

COVID-19 images, and normal, COVID-19 and viral pneumonia were (98.3%, 96.7%,

100%, 100%), and (98.3%, 96.7%, 99%, 100%), respectively. Moreover, the concept of

transfer learning in deep learning framework was used by Vikash et al. [28] for the

detection of pneumonia using pretrained ImageNet models [29] and their ensembles.
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2. Materials and method
In this work, we relied on deep CNN models for image classification which have been

pretrained from large volumes of images. Specifically, collections of chest X-ray images

with known clinical diagnoses for each subject, including COVID-19, were used to

retrain preexisting deep CNNmodels in a transfer learning approach. Before introducing

the X-ray images to the deep CNN models to retrain them, image preprocessing was

performed, consisting of image resizing and pixel values normalization to meet the input

specifications of each pretrained deep CNN model. After retraining the models using the

X-ray images, new chest X-rays with unknown clinical diagnosis labels were tested to

automatically detect images of subjects with COVID-19. The block diagram of the

transfer learning architecture used in the present evaluation for detecting COVID-19

patients from their chest X-ray images is shown in Fig. 13.1.

In the following subsections, we describe the evaluation data and the pretrained deep

CNN models used in the present evaluation.

FIGURE 13.1 Block diagram of the evaluated transfer learning architecture used for COVID-19 detection from
chest X-ray images.
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2.1 X-ray data

For the retraining of the preexisting deep CNNs and the evaluation of the new retrained

models, we relied on two datasets available online. The first dataset [24] (Dataset-A)

consists of grayscale chest X-ray images of size equal to 1024 � 1024 pixels. The dataset

has three classes and each of the X-ray images has been labeled as “COVID-19,”

“normal,” or “viral pneumonia.” The number of X-ray images per class of [24] is tabu-

lated in Table 13.1.

The second dataset [30] (Dataset-B) consists of grayscale chest X-ray images of size

equal to 300 � 400 pixels. The dataset has four classes and each of the X-ray images has

been labeled as “COVID-19,” “normal,” “viral pneumonia,” or “bacterial pneumonia.”

The number of X-ray images per class of [30] is tabulated in Table 13.2.

Examples of chest X-ray images of subjects having been diagnosed as “normal,”

“COVID-19,” “viral pneumonia,” or “bacterial pneumonia” are shown in Fig. 13.2.

During preprocessing of the X-ray images, they were resized to 224 � 224 pixels, using

bilinear interpolation, to fit to the pretrained deep models input size. The resized X-ray

images’ pixel values were then normalized to the range [0, 1] to the retraining of the deep

CNNmodels to converge faster. For the preprocessing of the X-ray images, the computer

vision and image processing library OpenCV [31] was used.

Table 13.1 Number of X-ray images per class in the [24]
dataset (Dataset-A).

Class name Number of X-ray images

COVID-19 219
Normal 1341
Viral pneumonia 1345

Table 13.2 Number of X-ray images per class in the [30]
dataset (Dataset-B).

Class name Number of X-ray images

COVID-19 60
Normal 880
Viral pneumonia 412
Bacterial pneumonia 650
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2.2 Pretrained deep convolutional neural network models

To apply transfer learning on the X-ray datasets described above and develop models for

COVID-19 detection, we relied on four well-known and widely used deep CNN models

for image classification. The pretrained deep CNN models used are the DenseNet [32],

the MobileNet [33], the ResNet [16], and the VGGNet [34].

2.2.1 VGGNet
The VVGNet has been constructed by the Visual Geometry Group of the University of

Oxford [34]. The VGG network architecture was created using 3 � 3 convolution filters

which are packed as a stack of convolutional layers, with each stack then being con-

nected to the max-pooling layer. Two fully connected layers are before the classification

layer. The VGGNet can have different depth which is indicated by the number after the

VGGNet name. In this evaluation, the VGGNet-16 which has 16 weight layers was used.

The “vanilla” VGGNet was trained using the ImageNet [35] with 224 � 224 input size and

1000-class outputs. The retrained VGGNet-16 for classification of X-ray images has 2, 3,

or 4 class outputs. The VGGNet-16 architecture is tabulated in Table 13.3.

FIGURE 13.2 Examples of chest X-ray images from Ref. [30] of subjects diagnosed with (A) normal, (B) COVID-19,
(C) viral pneumonia, and (D) bacterial pneumonia.
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2.2.2 MobileNet
The MobileNet [33] is a CNN model in which convolutional layers can be replaced by

depthwise separable convolutions and together with 1 � 1 kernels are used for pointwise

convolutions form a depthwise separable convolution block. The advantage of

MobileNet’s architecture is the reduced number of computations needed, both during

the training of the CNN model as well as during online testing. The MobileNet has been

constructed as a light-weight architecture for mobile and embedded vision applications.

The “vanilla” MobileNet was trained using the ImageNet [35] with 224 � 224 input size

and 1000-class outputs. The retrained MobileNet for classification of X-ray images has 2,

3, or 4 class outputs. The architecture of MobileNet is tabulated in Table 13.4.

2.2.3 ResNets
ResNet [16] stands for Residual Network and is based on the residual learning frame-

work. In residual networks, shortcut connections between stacks of convolutional layers

are inserted. The result of the inserted shortcuts into the plain network is to address

Table 13.3 The VGGNet-16 [34] architecture.

Layers

VGGNet-16

Output size Layer's structure

Convolution 224 � 224 3 � 3 conv, stride 1
Convolution 224 � 224 3 � 3 conv, stride 1
Pooling 112 � 112 2 � 2 max pool, stride 2
Convolution 112 � 112 3 � 3 conv, stride 1
Convolution 112 � 112 3 � 3 conv, stride 1
Pooling 56 � 56 2 � 2 max pool, stride 2
Convolution 56 � 56 3 � 3 conv, stride 1
Convolution 56 � 56 3 � 3 conv, stride 1
Convolution 56 � 56 3 � 3 conv, stride 1
Pooling 28 � 28 2 � 2 max pool, stride 2
Convolution 28 � 28 3 � 3 conv, stride 1
Convolution 28 � 28 3 � 3 conv, stride 1
Convolution 28 � 28 3 � 3 conv, stride 1
Pooling 14 � 14 2 � 2 max pool, stride 2
Convolution 14 � 14 3 � 3 conv, stride 1
Convolution 14 � 14 3 � 3 conv, stride 1
Convolution 14 � 14 3 � 3 conv, stride 1
Pooling 7 � 7 2 � 2 max pool, stride 2
Flatten 25,088
Dense 4,096
Dense 4,096
Classification 2, 3, or 4 fully connected, softmax
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vanishing/exploding gradients of centering layer responses, gradients, and propagated

errors. ResNet can have different deep layers, such as ResNet-18, ResNet-34, ResNet-50,

ResNet-101, and ResNet-152 with the number in the model name indicating the number

of convolutional layers. In this evaluation, we have used ResNet-50, ResNet-101, and

ResNet-152 which are suggested by the ResNet’s authors to be more accurate in image

classification than the ResNet-18 and ResNet-34 ones. The “vanilla” ResNet models were

trained using the ImageNet [35] with 224 � 224 input size and 1000-class outputs. The

retrained ResNet models for classification of X-ray images have 2, 3, or 4 class outputs.

The architectures of ResNet-50, ResNet-101, and ResNet-152 are tabulated in

Tables 13.5e13.7, respectively.

2.2.4 DenseNet
The Dense Convolutional Network (DenseNet) [32] is the CNN architecture that has the

connection from the previous layer to every other next layer. Unlike ResNet which has

the shortcut connection inserted into the plain network, DenseNet has connections

inserted to other layers which are called the dense block, and each block is connected to

Table 13.4 The MobileNet [33] architecture.

Layers

MobileNet

Output size Layer's structure

Convolution 112 � 112 3 � 3 � 32 conv, stride 2
Convolution 112 � 112 3 � 3 depthwise conv, stride 1
Convolution 112 � 112 1 � 1 � 64 conv, stride 1
Convolution 56 � 56 3 � 3 depthwise conv, stride 2
Convolution 56 � 56 1 � 1 � 128 conv, stride 1
Convolution 56 � 56 3 � 3 depthwise conv, stride 1
Convolution 56 � 56 1 � 1 � 128 conv, stride 1
Convolution 28 � 28 3 � 3 depthwise conv, stride 2
Convolution 28 � 28 1 � 1 � 256 conv, stride 1
Convolution 28 � 28 3 � 3 depthwise conv, stride 1
Convolution 28 � 28 1 � 1 � 256 conv, stride 1
Convolution 14 � 14 3 � 3 depthwise conv, stride 2
Convolution 14 � 14 1 � 1 � 512 conv, stride 1
5x Convolution 14 � 14 3 � 3 depthwise conv, stride 1

Convolution 14 � 14 1 � 1 � 512 conv, stride 1
Convolution 7 � 7 3 � 3 depthwise conv, stride 2
Convolution 7 � 7 1 � 1 � 1024 conv, stride 1
Convolution 7 � 7 3 � 3 depthwise conv, stride 2
Convolution 7 � 7 1 � 1 � 1024 conv, stride 1
Classification 1024 7 � 7 global average pool

2, 3, or 4 fully connected, softmax
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Table 13.5 The ResNet-50 [16] architecture.

Layers

ResNet-50

Output size Layer's structure

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Convolution 56 � 56

2
64

1� 1; 64

3� 3; 64

1� 1; 256

3
75 � 3

Convolution 28 � 28
2
64
1� 1; 128

3� 3; 128

1� 1; 512

3
75 � 4

Convolution 14 � 14
2
64

1� 1; 256

3� 3; 256

1� 1; 1024

3
75 � 6

Convolution 7 � 7
2
64

1� 1; 512

3� 3; 215

1� 1; 2048

3
75 � 3

Classification 2048 7 � 7 global average pool
2, 3, or 4 fully connected, softmax

Table 13.6 The ResNet-101 [16] architecture.

Layers

ResNet-101

Output size Layer's structure

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Convolution 56 � 56

2
64

1� 1; 64

3� 3; 64

1� 1; 256

3
75 � 3

Convolution 28 � 28
2
64
1� 1; 128

3� 3; 128

1� 1; 512

3
75 � 4

Convolution 14 � 14
2
64

1� 1; 256

3� 3; 256

1� 1; 1024

3
75 � 23

Convolution 7 � 7
2
64

1� 1; 512

3� 3; 215

1� 1; 2048

3
75 � 3

Classification 2048 7 � 7 global average pool
2, 3, or 4 fully connected, softmax
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the next block in cascade with a convolutional layer and pooling layer in between them.

The “vanilla” DenseNet models were trained using the ImageNet [35] with 224 � 224

input size and 1000-class outputs. The retrained DenseNet models for classification of X-

ray images have 2, 3, or 4 class outputs. The architectures of DenseNet-121, DenseNet-

169, and DenseNet-201 are tabulated in Tables 13.8e13.10, respectively.

3. Experimental results
The transfer learning architecture described in the previous section was evaluated using

the four deep CNN models described above for COVID-19 detection from X-ray images.

The performance of the evaluated CNN models was measured in terms of classification

accuracy, i.e.,

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(13.1)

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, and FN is the number of false negatives of the classified

dermatoscopic images. To avoid overlap between the training and testing subsets, a 10-

fold cross validation protocol was used.

Table 13.7 The ResNet-152 [16] architecture.

Layers

ResNet-152

Output size Layer's structure

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Convolution 56 � 56

2
64

1� 1; 64

3� 3; 64

1� 1; 256

3
75 � 3

Convolution 28 � 28
2
64
1� 1; 128

3� 3; 128

1� 1; 512

3
75 � 8

Convolution 14 � 14
2
64

1� 1; 256

3� 3; 256

1� 1; 1024

3
75 � 36

Convolution 7 � 7
2
64

1� 1; 512

3� 3; 215

1� 1; 2048

3
75 � 3

Classification 2048 7 � 7 global average pool
2, 3, or 4 fully connected, softmax
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Table 13.8 The DenseNet-121 [32] architecture.

Layers

DenseNet-121

Output size Layer's structure

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Dense block (1) 56 � 56

�
1� 1 conv

3� 3 conv

�
� 6

Transition (1) 56 � 56 1 � 1 conv
Transition (1) 28 � 28 2 � 2 average pool, stride 2
Dense block (2) 28 � 28

�
1� 1 conv

3� 3 conv

�
� 12

Transition (2) 28 � 28 1 � 1 conv
Transition (2) 14 � 14 2 � 2 average pool, stride 2
Dense block (3) 14 � 14

�
1� 1 conv

3� 3 conv

�
� 24

Transition (3) 14 � 14 1 � 1 conv
Transition (3) 7 � 7 2 � 2 average pool, stride 2
Dense block (4) 7 � 7

�
1� 1 conv

3� 3 conv

�
� 16

Classification 1024 7 � 7 global average pool
2, 3, or 4 fully connected, softmax

Table 13.9 The DenseNet-169 [32] architecture.

Layers

DenseNet-169

Output size Layer's structure

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Dense block (1) 56 � 56

�
1� 1 conv

3� 3 conv

�
� 6

Transition (1) 56 � 56 1 � 1 conv
Transition (1) 28 � 28 2 � 2 average pool, stride 2
Dense block (2) 28 � 28

�
1� 1 conv

3� 3 conv

�
� 12

Transition (2) 28 � 28 1 � 1 conv
Transition (2) 14 � 14 2 � 2 average pool, stride 2
Dense block (3) 14 � 14

�
1� 1 conv

3� 3 conv

�
� 32

Transition (3) 14 � 14 1 � 1 conv
Transition (3) 7 � 7 2 � 2 average pool, stride 2
Dense block (4) 7 � 7

�
1� 1 conv

3� 3 conv

�
� 32

Classification 1664 7 � 7 global average pool
2, 3, or 4 fully connected, softmax
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3.1 Dataset-A

The X-ray image classification results for Dataset-A [24] for all evaluated deep CNN

models after retraining them are tabulated in Table 13.11. The best performing model

and classification accuracy are indicated in bold.

Table 13.10 The DenseNet-201 [32] architecture.

Layers

DenseNet-201

Output size Layer's structure

Convolution 112 � 112 7 � 7 conv, stride 2
Pooling 56 � 56 3 � 3 max pool, stride 2
Dense block (1) 56 � 56

�
1� 1 conv

3� 3 conv

�
� 6

Transition (1) 56 � 56 1 � 1 conv
Transition (1) 28 � 28 2 � 2 average pool, stride 2
Dense block (2) 28 � 28

�
1� 1 conv

3� 3 conv

�
� 12

Transition (2) 28 � 28 1 � 1 conv
Transition (2) 14 � 14 2 � 2 average pool, stride 2
Dense block (3) 14 � 14

�
1� 1 conv

3� 3 conv

�
� 48

Transition (3) 14 � 14 1 � 1 conv
Transition (3) 7 � 7 2 � 2 average pool, stride 2
Dense block (4) 7 � 7

�
1� 1 conv

3� 3 conv

�
� 32

Classification 1920 7 � 7 global average pool
2, 3, or 4 fully connected, softmax

Table 13.11 Classification accuracy (in percentages) for
different retrained deep CNN models in multiclass
classification on Dataset-A [24] using 10-fold cross validation.

Retrained deep convolutional neural network Accuracy (%)

DenseNet-121 99.00
DenseNet-169 95.64
DenseNet-201 99.07
MobileNet 99.76
ResNet-50 99.38
ResNet-101 97.63
ResNet-152 98.45
VGG-16 60.59

The best performing model and classification accuracy are indicated in bold.
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As can be seen in Table 13.11, the best performing model after transfer learning is the

MobileNet, followed by ResNet-50, DenseNet-201, and DenseNet-121 all having accu-

racy more than 99%. In addition, we performed binary classification (i.e., COVID-19 vs.

non-COVID-19), and the binary classification results are tabulated in Table 13.12.

As can be seen in Table 13.12, the best performing model in binary classification is

also the MobileNet, followed by ResNet-101, DenseNet-201, and ResNet-152 all having

accuracy more than 99%. To investigate the classification accuracy per class, the

confusion matrices for the multiclass and the binary classification of Dataset-A are

shown in Tables 13.13 and 13.14, respectively.

Table 13.12 Classification accuracy (in percentages) for
different retrained deep convolutional neural network
models in binary classification on Dataset-A [24] using
10-fold cross validation.

Retrained deep convolutional neural network Accuracy (%)

DenseNet-121 91.55
DenseNet-169 98.97
DenseNet-201 99.62
MobileNet 99.83
ResNet-50 98.73
ResNet-101 99.69
ResNet-152 99.55
VGG-16 92.46

Table 13.13 Confusion matrix (in percentages) for the best performing MobileNet
model in multiclass classification on Dataset-A [24] using 10-fold cross validation.

Classified as / COVID-19 Normal Viral pneumonia

COVID-19 100.00 0.00 0.00
Normal 0.00 99.78 0.22
Viral pneumonia 0.00 0.30 99.70

Table 13.14 Confusion matrix (in percentages) for the best performing MobileNet
model in binary classification on Dataset-A [24] using 10-fold cross validation.

Classified as / COVID-19 Non-COVID-19

COVID-19 99.09 0.91
Non-COVID-19 0.11 99.89
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As shown in Tables 13.13 and 13.14, the best performing retrained MobileNet model

can detect the COVID-19 class with accuracy at or close to 100% both in multiclass and

binary classification setups.

3.2 Dataset-B

The X-ray image classification results for Dataset-B [30] for all evaluated deep CNN

models after retraining them are tabulated in Table 13.15. The best performing model

and classification accuracy are indicated in bold.

As can be seen in Table 13.15, the best performing model after transfer learning is the

DenseNet-201, followed by ResNet-50, with both having accuracy above than 96%. In

addition, we performed binary classification (i.e., COVID-19 vs. non-COVID-19), and the

binary classification results are tabulated in Table 13.16.

Table 13.15 Classification accuracy (in percentages) for
different retrained deep convolutional neural network
models in multiclass classification on Dataset-B [30] using
10-fold cross validation.

Retrained deep convolutional neural network Accuracy (%)

DenseNet-121 94.46
DenseNet-169 94.91
DenseNet-201 96.76
MobileNet 95.32
ResNet-50 96.16
ResNet-101 95.46
ResNet-152 89.21
VGG-16 91.32

Table 13.16 Classification accuracy (in percentages) for
different retrained deep convolutional neural network
models in binary classification on Dataset-B [30] using 10-fold
cross validation.

Retrained deep convolutional neural network Accuracy (%)

DenseNet-121 99.75
DenseNet-169 99.85
DenseNet-201 99.90
MobileNet 99.60
ResNet-50 100.00
ResNet-101 99.45
ResNet-152 99.85
VGG-16 97.00
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As can be seen in Table 13.16, the best performing model in binary classification is the

ResNet-50 with accuracy 100% followed by DenseNet-201 with accuracy 99.9%,

DenseNet-201 and ResNet-152 both having accuracy 99.85%. To investigate the classi-

fication accuracy per class, the confusion matrices for the multiclass and the binary

classification of Dataset-B are shown in Tables 13.17 and 13.18, respectively.

As shown in Tables 13.13 and 13.14, the best performing retrained models, i.e.,

DenseNet-201 model in the multiclass classification setup and the ResNet-50 model in

the binary classification setup, are detecting COVID-19 class without any false

rejections. In the case of multiclass classification, 0.23% of the normal class X-ray

images and 0.31% of the bacterial pneumonia class X-ray images were false positives

to COVID-19 class.

To summarize the above-presented results and focusing on COVID-19 detection (i.e.,

the binary setup), we present the detection accuracy in percentages for each of the

evaluated deep CNN models for both X-ray datasets in Fig. 13.3. As can be seen in

Fig. 13.3, the models that achieved competitive detection accuracy in both datasets are

the DenseNet-201, MobileNet, ResNet-152, and ResNet-101.

Table 13.17 Confusion matrix (in percentages) for the best performing DenseNet-
201 model in multiclass classification on Dataset-B [30] using 10-fold cross validation.

Classified as / COVID-19 Normal Viral pneumonia Bacterial pneumonia

COVID-19 100.00 0.00 0.00 0.00
Normal 0.23 98.86 0.34 0.57
Viral pneumonia 0.00 0.49 89.81 9.71
Bacterial pneumonia 0.31 0.15 1.54 98.00

Table 13.18 Confusion matrix (in percentages) for the best performing ResNet-50
model in binary classification on Dataset-B [30] using 10-fold cross validation.

Classified as / COVID-19 Non-COVID-19

COVID-19 100.00 0.00
Non-COVID-19 0.00 100.00
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4. Conclusion
COVID-19 outbreak has already caused thousands of deaths as well as serious effects in

world’s health, social life, and economy. Because of the huge number of cases, the fact

that the virus has not yet well-studied and because of the difficulties of the diagnostic

tests, it is essential to investigate the possibility of having alternative, complementary,

and supportive tools to assist medical staff in decision making and thus tackling this

pandemic. Following a transfer learning approach, we evaluated several well-known

pretrained deep CNN models for detection of subjects with COVID-19 from their chest

X-ray images, which included normal, viral, and bacterial pneumonia cases, except the

new COVID-19 coronavirus. The retrained models were tested on two different datasets,

and the best performing models were the MobileNet, DenseNet, and ResNet with top

performing classification accuracies varying from 96.76% to 100%. The evaluation results

indicated the potential of detecting the new coronavirus from X-ray images. The

collection of more chest X-ray data from diagnosed cases with COVID-19 will allow the

use of data mining analysis to discover COVID-19 markers in the X-ray images and

subsequently allow the development of such computer-aided diagnostic tools.
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